Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Med Nov Technol Devices ; 18: 100243, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20230784

ABSTRACT

As we set into the second half of 2022, the world is still recovering from the two-year COVID-19 pandemic. However, over the past three months, the outbreak of the Monkeypox Virus (MPV) has led to fifty-two thousand confirmed cases and over one hundred deaths. This caused the World Health Organisation to declare the outbreak a Public Health Emergency of International Concern (PHEIC). If this outbreak worsens, we could be looking at the Monkeypox virus causing the next global pandemic. As Monkeypox affects the human skin, the symptoms can be captured with regular imaging. Large samples of these images can be used as a training dataset for machine learning-based detection tools. Using a regular camera to capture the skin image of the infected person and running it against computer vision models is beneficial. In this research, we use deep learning to diagnose monkeypox from skin lesion images. Using a publicly available dataset, we tested the dataset on five pre-trained deep neural networks: GoogLeNet, Places365-GoogLeNet, SqueezeNet, AlexNet and ResNet-18. Hyperparameter was done to choose the best parameters. Performance metrics such as accuracy, precision, recall, f1-score and AUC were considered. Among the above models, ResNet18 was able to obtain the highest accuracy of 99.49%. The modified models obtained validation accuracies above 95%. The results prove that deep learning models such as the proposed model based on ResNet-18 can be deployed and can be crucial in battling the monkeypox virus. Since the used networks are optimized for efficiency, they can be used on performance limited devices such as smartphones with cameras. The addition of explainable artificial intelligence techniques LIME and GradCAM enables visual interpretation of the prediction made, helping health professionals using the model.

2.
Diagnostics (Basel) ; 12(12)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163270

ABSTRACT

SARS-CoV-2 and Influenza-A can present similar symptoms. Computer-aided diagnosis can help facilitate screening for the two conditions, and may be especially relevant and useful in the current COVID-19 pandemic because seasonal Influenza-A infection can still occur. We have developed a novel text-based classification model for discriminating between the two conditions using protein sequences of varying lengths. We downloaded viral protein sequences of SARS-CoV-2 and Influenza-A with varying lengths (all 100 or greater) from the NCBI database and randomly selected 16,901 SARS-CoV-2 and 19,523 Influenza-A sequences to form a two-class study dataset. We used a new feature extraction function based on a unique pattern, HamletPat, generated from the text of Shakespeare's Hamlet, and a signum function to extract local binary pattern-like bits from overlapping fixed-length (27) blocks of the protein sequences. The bits were converted to decimal map signals from which histograms were extracted and concatenated to form a final feature vector of length 1280. The iterative Chi-square function selected the 340 most discriminative features to feed to an SVM with a Gaussian kernel for classification. The model attained 99.92% and 99.87% classification accuracy rates using hold-out (75:25 split ratio) and five-fold cross-validations, respectively. The excellent performance of the lightweight, handcrafted HamletPat-based classification model suggests that it can be a valuable tool for screening protein sequences to discriminate between SARS-CoV-2 and Influenza-A infections.

SELECTION OF CITATIONS
SEARCH DETAIL